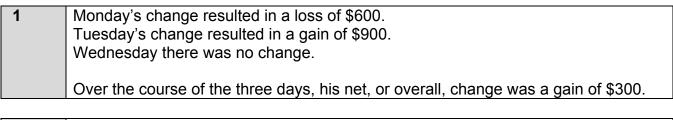
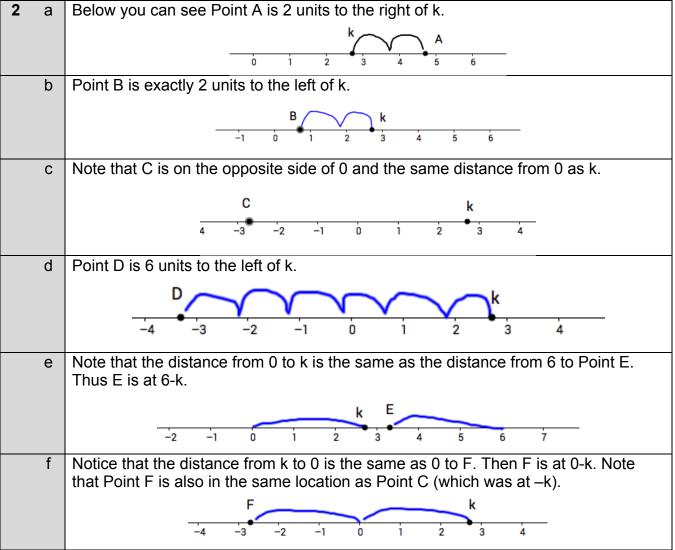

PROFICIENCY CHALLENGE 13 ANSWER KEY

1	The area of the original square is 9 cm ² . If we double the side length, the square is 36 cm ² . If we multiply the lengths by 10, the square is 900 cm ² .
	In general, if you multiply the length of a square's side by <i>k</i> the area will be k^2 as large.


2	468 treats fit in the pan. You can cut 26 half-inch "columns" and 18 half-inch "rows from the pan.	
а	$\frac{5}{8}in^3$ since $\frac{1}{2} \cdot \frac{1}{2} \cdot 2\frac{1}{2} = \frac{5}{8}$	
b	292.5 in ³	



PROFICIENCY CHALLENGE 13 ANSWER KEY (Continued)

3	So far we are up to 11 tarps. Nest, we can tarp the roof. On the left end we already	
(cont)		
	covered, as shown below. We are now at 14 tarps.	
	45	
	g	
	The last thing to cover is the remaining short side of the building. Since we need to	
	wrap around to both adjacent sides of the building, we will need 2 tarps to complete	
	the job, brining our total to 16 tarps.	
b	108 liters	
	The inside of the building holds 5400 m ³ . This means we have 54 hundred cubic	
	meters of volume, and since each hundred requires 2 L of chemicals, we need 108	
	L of chemicals.	
4	AMV; For example: Mark should buy a large or extra large storage unit.	
	One small storage unit will hold 16 of Mark's boxes (if they can be tightly packed).	
	He would need to get 5 small storage units to adequately store his 72 boxes. This	
	would cost him \$250 per month.	
	One medium storage unit will hold 60 of Mark's boxes, and leaves a 1.5 foot wide	
	walkway through the unit. Mark could get one small and one medium storage unit,	
	but that would cost \$125 per month (the extra large is cheaper than that). One large	
	storage unit will hold 72 boxes, while the extra large will hold 108 boxes.	
	It does not seem cost effective to get two storage units, so Mark needs either a	
	large or extra large storage unit. I would recommend Mark get the extra large unit	
	so he has room for walking and does not have to stack all his boxes to the ceiling.	

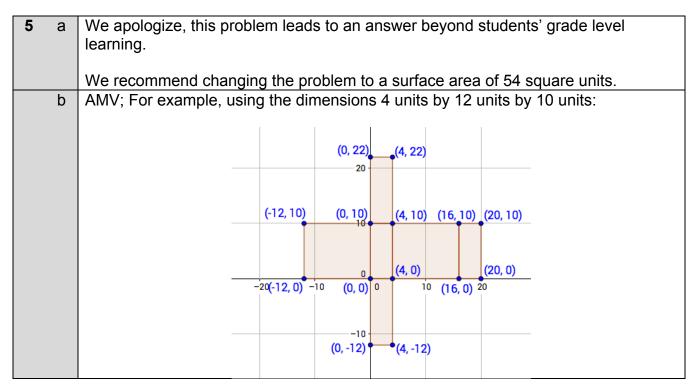
PROFICIENCY CHALLENGE 14 ANSWER KEY

PROFICIENCY CHALLENGE 14 ANSWER KEY (Continued)

3	AMV; For example: $p = -3.25$
	-5 -4 -3 -2 -1 0 1 2 3 p
ab	Point A is 4 units to the right of P. That is A is at 0.25. Point B is at 3.25 which is the absolute value of p. A = B
С	The distance between p and 2 is 5.25. It is 3.25 units from p to 0 and 2 units from 0 to 2.
d	AMV; Richard's statement is true for all values of p that are negative. When p is positive then $p = p $, which means the distance between them is 0.
4	$-\frac{3}{4}$ is closer to 0 because it is 0.75 units from 0, while $\frac{4}{3}$ is $1\frac{1}{3}$ units from 0.

5	-0.5 is halfway between -4 and 3.	

PROFICIENCY CHALLENGE 15 ANSWER KEY


1	а	AMV; For example: (2,2), (-3,2), (-3,-3) and (2,-3)
	b	AMV; For example: (4,2), (-2,2), (-2,-2), and (4,-2)

2	а	AMV; For example: (0,0), (8,0) and (0,8)
	b	AMV; For example: (0,0), (9.5,0) and (0,1)

3 a	$\left(\frac{1}{6},-\frac{4}{5}\right)$
b	(-2.3, 2.4)

4 a	and the reflection of C is (0,		(
b	See Figure 2 below. The read and the reflection of C is (0,	flection of A is $\left(-3, 4\frac{1}{2}\right)$, the r -7).	reflection of B is $\left(\frac{7}{4}, -\frac{12}{5}\right)$,
С	· · · · · · · · · · · · · · · · · · ·	flection of A is (-3, -4.5), the i	reflection of B is , and the
	Figure 1	Figure 2	Figure 3
	B' = (-1.75/2.4) $-4 -2$ $-4 -2$ $-4 -2$ $-4 -2$ $-4 -2$ $-4 -2$ $-4 -2$ $-4 -2$ $-4 -2$ $-4 -2$ $-4 -4$ $-$	A' = (-3, 4.5) $A' = (-3, 4.5)$ A	B C" = (0, 7) -6 -4 -6 -4 -6 -4 -6 -4 -6 -4 -6 -4 -6 -4 -6 -6 -6 -6

PROFICIENCY CHALLENGE 15 ANSWER KEY (Continued)

PROFICIENCY CHALLENGE 16 ANSWER KEY

1	AMV.
	One might assume or estimate that the average stride is 3 feet. Then to go one mile you would take 1,760 steps. To walk 1,000 miles, you would take 1,760,000 steps.
	1,000 km is less than 1,000 miles, so it would be fewer steps. We could convert from 1,000 km into miles and follow the same calculations.

2	а	2÷4 or 0.5 hours
	b	<i>m</i> ÷4 hours
	С	$\frac{m}{4} + \frac{m}{3}$ hours

3	There were at least 20 people who completed the survey.
	$45\% = \frac{45}{100} = \frac{9}{20}$. This means at a minimum, 9 of 20 people liked vanilla.